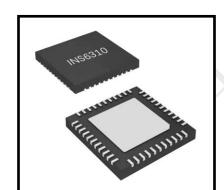
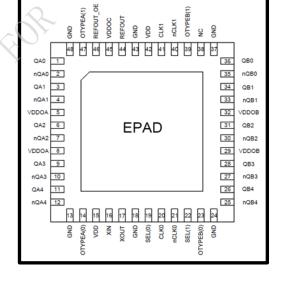


INS6310A —1:10 Ultra-Low Additive Jitter Differential Clock Buffer

FEATURES


- Two banks with 5 differential outputs each
 - LVPECL, LVDS, HCSL or Hi-Z (selectable per bank)
 - > LVPECL additive jitter with clock source at 122.88MHz
 - ➤ 40 fs RMS (10KHz to 1MHz)
 - ➤ 80 fs RMS (12KHz to 20MHz)
- 3:1 Input Multiplexer
 - Two universal inputs operate up to 2.5GHz and accept LVPECL, LVDS, CML, SSTL, HSTL, HCSL or single-ended clocks
 - > One crystal input accepts 10 to 40MHz crystal or single-ended clock
- High PSRR: -65/-76dBc (LVPECL/LVDS) at 156.25MHz
- LVCMOS output with synchronous enable input
- Pin-Controlled configuration
- V_{DD} core supply: $3.3V \pm 5\%$
- 3 independent V_{DDO} output supplies: $3.3V/2.5V \pm 5\%$
- Industrial temperature range: -40°C to +85°C
- Package: QFN48(7.0mm*7.0mm*0.75mm)


•

APPLICATIONS

- High speed Clock distribution and level translation
- Wireless BBU, RRU and Wired Communication
- Servers, Computing, PCI Express (PCIe)
- Switches, Routers, Line Cards, Timing Cards

GENERAL DESCRIPTIONS

The INS6310A is a high performance, versatility 10-output differential fanout buffer intended for high-frequency, low-jitter clock/data distribution and level translation. The input clock can be selected from two universal inputs or one crystal input. The selected input clock is distributed to two banks of 5 differential outputs and one LVCMOS output. Both differential output banks can be independently configured as LVPECL, LVDS, or HCSL drivers, or disabled. The LVCMOS output has a synchronous enable input for runt-pulse-free operation when enabled or disabled. The INS6310A operates from a 3.3V core supply and 3 independent 3.3V/2.5V output supplies.

TEL:0086-0769-88010888

https://www.dptel.com/

Songshan Lake, Dongguan, Guangdong

Version: 1.2 DAPU Confidential Page: 1/21

Table of Amendment

Version	Revised Content	Draft	Revised Date
V1.0	Chinese Version		2021.11.29
V1.1	English Version. Change V _{DDOX} maximum Voltage from 3.465V to 3.45V.		2022.02.08
V1.2	Error Correction: nQB* QB* pin swap in Pinouts diagram on Page 1 and Page 5		2022.06.23
			>
		0	
	• . (Y	
	CY		
		C	
		}	
4			

INS6310A

Table of Contents

1	GENERAL DESCRIPTION	4
2	FUNCTIONAL BLOCK DIAGRAM	4
3	PINOUTS	5
4	ELECTRICAL CHARACTERISTICS	6
5	FUNCTION DESCRIPTION	14
6	ENVIRONMENT	21
7	DACK ACE OUTLINE	21

Version: <u>1.2</u>

1 GENERAL DESCRIPTION

The INS6310A is a 2.5-GHz, 10-output differential fanout buffer intended for high-frequency, low-jitter clock/data distribution and level translation. The input clock can be selected from two universal inputs or one crystal input. The selected input clock is distributed to two banks of 5 differential outputs and one LVCMOS output. Both differential output banks can be independently configured as LVPECL, LVDS, or HCSL drivers, or disabled. The LVCMOS output has a synchronous enable input for runt-pulse-free operation when enabled or disabled. The INS6310A operates from a 3.3V core supply and 3 independent 3.3V/2.5V output supplies.

The INS6310A provides high performance, versatility, and power efficiency, making it ideal for replacing fixed-output buffer devices while increasing timing margin in the system.

The INS6310A does not have power supply sequencing requirements between the core and output supply domains.

2 FUNCTIONAL BLOCK DIAGRAM

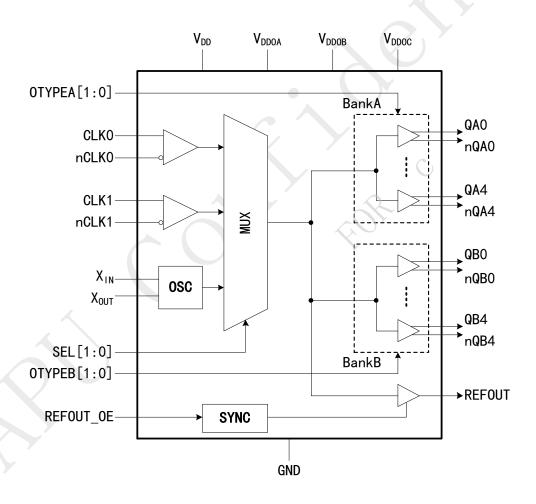


Figure 1. Block Diagram

Version: 1.2 DAPU Confidential Page: 4/21

3 PINOUTS

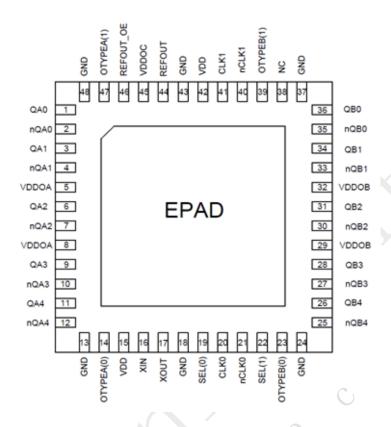


Figure 2. Pinouts Diagram

Table 1. Pin Definition

Tuole 1. 1 in Berningen								
PIN No.	PIN Name	TYPE	DESCRIPTIONS					
1,2	QA0,nQA0	OUT	Bank A Differential clock output 0					
3,4	QA1,nQA1	OUT	Bank A Differential clock output 1					
5,8	$V_{ m DDOA}$	PWR	Power supply for Bank A output buffers. V _{DDOA} can operate from 3.3V or 2.5V. The V _{DDOA} pins are internally tied together. Bypass with a 0.1uF low-ESR capacitor placed very close to each V _{DDO} pin.					
6,7	QA2,nQA2	OUT	Bank A Differential clock output 2					
9,10	QA3,nQA3	OUT	Bank A Differential clock output 3					
11,12	QA4,nQA4	OUT	Bank A Differential clock output 4					
13, 18, 24, 37, 43, 48	GND	GND	Ground					
14,47	OTYPEA[0] OTYPEA[1]	IN	Bank A Outputs selection pins. Pull down internally.					
15,42	$V_{ ext{DD}}$	PWR	Power supply for core and input buffer blocks. The VDD supply operates from 3.3V. Bypass with a 0.1uF low-ESR capacitor placed very close to each VDD pin.					

TEL:0086-0769-88010888

https://www.dptel.com/

Songshan Lake, Dongguan, Guangdong

Version: 1.2 DAPU Confidential Page: 5/21

PIN No.	PIN Name	TYPE	DESCRIPTIONS
16	$X_{ m IN}$	IN	Input for crystal. Can also be driven by a XO, TCXO, or other external single-ended clock.
17	$X_{ m OUT}$	OUT	Output for crystal. Leave X_{OUT} floating if X_{IN} is driven by a single-ended clock.
19,22	SEL[0] SEL[1]	IN	Clock input selection pins. Pull down internally.
20,21	CLK0,nCLK0	IN	Universal clock input 0 (differential/single-ended).
23,39	OTYPEB[0] OTYPEB[1]	IN	Bank A Outputs selection pins. Pull down internally.
25,26	nQB4,QB4	OUT	Bank B Differential clock output 4
27,28	nQB3,QB3	OUT	Bank B Differential clock output 3
29,32	$ m V_{DDOB}$	PWR	Power supply for Bank A output buffers. V _{DDOA} can operate from 3.3V or 2.5V. The V _{DDOA} pins are internally tied together. Bypass with a 0.1uF low-ESR capacitor placed very close to each V _{DDO} pin.
30,31	nQB2,QB2	OUT	Bank B Differential clock output 2
33,34	nQB1,QB1	OUT	Bank B Differential clock output 1
35,36	nQB0,QB0	OUT	Bank B Differential clock output 0
38	NC	C- ^	Not connected internally. Pin may be floated or grounded.
40,41	nCLK1,CLK1	IN	Universal clock input 1 (differential/single-ended).
44	REFOUT	OUT	LVCMOS reference output. Enable output by pulling REFOUT_OE pin high.
45	V _{DDOC}	PWR	Power supply for Bank A output buffers. V _{DDOA} can operate from 3.3V or 2.5V. The V _{DDOA} pins are internally tied together. Bypass with a 0.1uF low-ESR capacitor placed very close to each V _{DDO} pin.
46	REFOUT_OE	IN	REFOUT enable input. Enable signal is internally synchronized to select clock input. Pull down internally.
	EPAD		Connect to the PCB ground plane for heat dissipation.

4 ELECTRICAL CHARACTERISTICS

Table 2. Absolute Maximum Ratings

Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameters Symbol	Value	Unit
-------------------	-------	------

TEL:0086-0769-88010888 https://www.dptel.com/

Songshan Lake, Dongguan, Guangdong

Version: 1.2 DAPU Confidential Page: 6/21

Power Supply Voltage	V _{DD} V _{DDOA} V _{DDOB} V _{DDOC}	-0.3~3.6	V
Input Voltage	V_{IN}	-0.3 \sim V _{DD} +0.3	V
Storage Temperature Range	T_{STG}	-65~150	°C
Junction Temperature	T_{J}	150	°C
Thermal resistance from Junction to Ambient	$\theta_{ m JA}$	28.5	°C/W

Table 3. Recommended Parameters

Daman ataua	C b - 1		Value		TT\$4	Nada
Parameters	Symbol	Min.	Тур.	Max.	Unit	Notes
Core Supply Voltage	$V_{ m DD}$	3.15	3.3	3.45	V	
Output	$V_{\mathrm{DDOX}^{(1)}}$	3.135	3.3	3.45	V	
Supply Voltage	V DDOX'	2.375	2.5	2.625	V	
	Iven sone		24	31	mA	All Outputs Disabled. Clock input 0 or 1 Selected.
	I _{VDD_CORE}		23	30	mA	All Outputs Disabled. Xin Selected.
Core Supply	I _{VDD_LVDS}		50	75	mA	Additive Core Supply Current, Per LVDS Bank Enabled
Current	I _{VDD_LVPECL}		20	26	mA	Additive Core Supply Current, Per LVPECL Bank Enabled
	I _{VDD_HCSL}		32	42	mA	Additive Core Supply Current, Per HSCL Bank Enabled
	I _{VDD_LVCMOS}		4	5.2	mA	Additive Core Supply Current, Per LVCMOS Bank Enabled
	I _{VDDO_LVDS}		24	31	mA	Additive Out Supply Current, Per LVDS Bank Enabled
Output	I _{VDDO_LVPECL}		230	299	mA	Additive Out Supply Current, Per LVPECL Bank Enabled
Supply Current	I _{VDDO_HCSL}		72	94	mA	Additive Out Supply Current, Per HSCL Bank Enabled
	I _{VDDO_LVCMOS}		9	12	mA	Additive Out Supply Current, Per LVCMOS Bank Enabled
Ambient Temperature	T _A	-40		85	°C	

^{* (1)} DDOX will represent $_{DDOA}/_{DDOB}/_{DDOC}$ in general when no distinction is needed

Table 4. Control Signals input Characteristics

 $Test \ Condition: \ -40^{\circ}C \leq T_{A} \leq 85^{\circ}C, 3.15V \leq V_{DD} \leq 3.45V, 2.375V \leq V_{DDOX} \leq 2.625 \ or \ 3.135V \leq V_{DDOX} \leq 3.45V, 2.375V \leq V_{DDOX} \leq 3.$

Domonostores	Ch al		Value	TT24	Notes				
Parameters	Symbol	Min.	Тур.	Max.	Unit	Notes			
Control Signals (OTYPEA[0:1],OTYPEB[0:1],SEL[0:1],REFOUT_OE)									
High Level Input	$ m I_{IH}$			50	uA				

TEL:0086-0769-88010888

https://www.dptel.com/

Songshan Lake, Dongguan, Guangdong

Version: 1.2 DAPU Confidential Page: 7/21

Current						
Low Level Input Current	$I_{\rm IL}$	-5	0.1	5	uA	
Input High Voltage	V_{IH}	1.6		V_{DD}	V	
Input Low Voltage	V_{IL}	0		0.4	V	

Table 5. CLKx/nCLKx⁽²⁾

Test Condition: -40°C \leq TA \leq 85°C,3.15V \leq V_{DD} \leq 3.45V,2.375V \leq V_{DDOX} \leq 2.625 or 3.135V \leq V_{DDOX} \leq 3.45, CLK driven differentially, input slew rate \geq 3V/ns

Developed	Gll	Value			T T . *4	NT 4			
Parameters	Symbol	Min.	Тур.	Max.	Unit	Notes			
CLKx Single-Ended Inp	ut Clock Spec	ifications							
Single-Ended Input High Voltage	V_{IH}			V_{DD}	V	CI Vy driven single			
Single-Ended Input Low Voltage	V_{IL}	0			V	CLKx driven single- ended (AC or DC coupled), nCLKx AC			
Single-Ended Input Voltage Swing(P2P)	$V_{I_SE}^{(3)}$	0.3		2	V	coupled to GND or externally biased within			
Single-Ended Input Common-Mode Voltage	$V_{CM}^{(4)}$	0.25	<u>C</u>	V _{DD} -1.2	V	V _{CM} range			
Differential Input Clock	Specifications	s (CLKx/	nCLKx)			Ö			
Differential Input Voltage Swing	V_{ID}	0.15	>	1.3	V				
Differential Input	→ (0.25		V _{DD} -0.9	V	V _{ID} =800mV			
Common-Mode	$V_{CMD}^{(5)}$	0.25		V _{DD} -1.1	V	V _{ID} =350mV			
Voltage		0.25		V _{DD} -1.2	V	V _{ID} =150mV			
Differential Input High Voltage	V_{IHD}			V_{DD}	V				
Differential Input Low Voltage	$V_{\rm ILD}$	0			V				
			-65		dBc	F _{IN} =1000MHz			
Mux Isolation,	ISO _{IN}		-71		dBc	F _{IN} =500MHz			
CLKin0 to CLKin	ISOIN		-82		dBc	F _{IN} =200MHz			
) >			-84		dBc	F _{IN} =100MHz			
Input Frequency (CLK)	Input Frequency (CLK/nCLK)								
Input Frequency Range	$F_{ m IN}$	0		2500	MHz	Functional up to 2.5GHz, Output frequency range and timing specified per output type (refer to LVPECL, LVDS, HCSL, LVCMOS output			

TEL:0086-0769-88010888

https://www.dptel.com/

Songshan Lake, Dongguan, Guangdong

Version: 1.2 DAPU Confidential Page: 8/21

Parameters	Symbol	Value		Unit	Notes	
						specifications)

- * (2) CLKx/nCLKx represent CLK0/nCLK0 和 CLK1/nCLK1
- (3) For clock input frequency \geq 100MHz, CLKx can be driven with single-ended (LVCMOS) input swing up to 3.3VPP. For clock input frequency < 100MHz, the single-ended input swing should be limited to $2V_{PP}$ max to prevent input saturation (refer to Driving the Clock Inputs for interfacing 2.5V/3.3V LVCMOS clock input < 100MHz to CLKx).
 - $(4) \ CLKx \ driven \ single-ended \ (AC \ or \ DC \ coupled), \ nCLKx \ AC \ coupled \ to \ GND \ or \ externally \ biased \ within \ V_{CM} \ range$
 - (5) AC coupled must be applied when V_{CM} of input signals exceed V_{CMD} Max..

 $Table~6.~X_{IN}/X_{OUT}~Characteristics$ $Test~Condition:~-40^{\circ}C \leq TA \leq 85^{\circ}C, 3.15V \leq V_{DD} \leq 3.45V, 2.375V \leq V_{DDOX} \leq 2.625~or~3.135V \leq V_{DDOX} \leq 3.45V, 2.375V \leq 0.45V, 2.375V \leq 0.45V, 2.375V \leq 0.45V, 2.375V \leq 0.45V, 2.375V \leq$

			Value			
Parameters	Symbol		value	Unit	Notes	
1 arameters	Бушьог	Min.	Тур.	Max.		Tiotes
Crystal Input						
Crystal Mode			Fundamental			
Crystal Frequency Input Range	f _{XIN} /XOUT	10	~ ^	40	MHz	
Effective Series	ECD			200	Ω	10MHz <f<sub>XIN≤30 MHz</f<sub>
Resistance	ESR	125			Ω	30MHz <f<sub>XIN<40 MHz</f<sub>
Input Capacitance	C_{XO}		4	0/2	pF	
Single-ended input						
External Clock Input Frequency	$f_{ m XIN}$	DC		250	MHz	Single-Ended Input, Xout floating

Table 7. LVDS Outputs Characteristics

Test Condition: $-40^{\circ}\text{C} \le T_A \le 85^{\circ}\text{C}$, $3.15\text{V} \le V_{DD} \le 3.45\text{V}$, $2.375\text{V} \le V_{DDOX} \le 2.625$ or $3.135\text{V} \le V_{DDOX} \le 3.45$, CLK driven differentially, input slew rate $\ge 3\text{V/ns}$

Domonostono	Crombal	Value			TT . *4	N T 4	
Parameters	Symbol	Min.	Тур.	Max.	Unit	Notes	
QAn/nQAn,QBn/nQBn							
Maximum Output	E	1000	1600		MHz	Full V_{OD} Swing, $V_{OD} > 250 \text{mV}$, $R_L = 100 \Omega$ differential	
Frequency	+ LOUT MAY	1500	2100		MHz	Reduced V_{OD} Swing, $V_{OD} > 200 \text{mV}$, $R_L = 100 \Omega$ differential	
Output Voltage Swing	V_{OD}	250	400	450	mV	$T_A = 25^{\circ}C$, DC	
Change in Magnitude of V _{OD}	$\Delta { m V}_{ m OD}$	-50		50	mV	Measurement, $R_L = 100\Omega$ differential	

TEL:0086-0769-88010888

https://www.dptel.com/

Songshan Lake, Dongguan, Guangdong

Version: 1.2 DAPU Confidential Page: 9/21

Parameters	Symbol		Value		Unit	Notes
for Complementary Output States						
Output Offset Voltage	V _{OFFSET}	1.125	1.25	1.375	V	
Change in Magnitude of V _{OFFSET} for Complementary Output States	$\Delta { m V}_{ m OFFSET}$	-35		35	mV	
Output Duty Cycle	Duty Cycle	45	50	55	%	
Output Rise/Fall Time, 20% to 80%	t _{Rise} /t _{Fall}		175	300	ps	uniform transmission line up to 10 inches with 50Ω characteristic impedance, RL = 100Ω differential, $C_L \le 5p$
Propagation Delay	t_{Delay}	200	400	600	ps	RL = 100Ω differential, C_L $\leq 5pF$
Output Skew	t _{Skew}		30	50	ps	Skew specified between any two CLKouts with the same buffer type. Load
Part-to-part Output Skew	t_{PDP}		80	120	ps	conditions per output type are the same as propagation delay specifications.
			132	<i>,</i>	fs	F _{IN} =100MHz Slew Rate≥3V/ns 1MHz to 20MHz
		A	103		fs	F _{IN} =156.25MHz Slew Rate≥3V/ns 1MHz to 20MHz
Additive RMS Jitter	tı		33		fs	F _{IN} =625MHz Slew Rate≥3V/ns 1MHz to 20MHz
_)	138		fs	F _{IN} =100MHz Slew Rate≥3V/ns 10kHHz to 20MHz
)		99		fs	F _{IN} =156.25MHz Slew Rate≥3V/ns 10kHHz to 20MHz
			-159.5		dBc/Hz	F _{IN} =100MHz Slew Rate≥3V/ns
Noise Floor f _{OFFSET} ≥10MHz	NF		-157		dBc/Hz	F _{IN} =156.25MHz Slew Rate≥3V/ns
			-152.5		dBc/Hz	F _{IN} =625MHz Slew Rate≥3V/ns

Table 8. LVPECL Outputs Characteristics

Test Condition: $-40^{\circ}\text{C} \le T_A \le 85^{\circ}\text{C}$, $3.15\text{V} \le V_{DD} \le 3.45\text{V}$, $2.375\text{V} \le V_{DDOX} \le 2.625$ or $3.135\text{V} \le V_{DDOX} \le 3.45$, CLK driven differentially, input slew rate $\ge 3\text{V/ns}$.

	J , 1					
Donomotors	Symbol		Value		Unit	Notes
Parameters S	Symbol	Min.	Тур.	Max.	UIII	Notes

TEL:0086-0769-88010888

https://www.dptel.com/

Songshan Lake, Dongguan, Guangdong

Version: 1.2 DAPU Confidential Page: 10 / 21

Parameters	Symbol		Value		Unit	Notes
QAn/nQAn,QBn/nQ	QBn					
		1000	1200		MHz	$ \begin{aligned} & \text{Full V}_{\text{OD}} \text{Swing , V}_{\text{OD}} \geqslant \\ & 600 \text{mV, R}_{L} = 100 \Omega \\ & \text{differential, V}_{\text{DDOX}} = 3.3 \text{V,} \\ & \text{R}_{T} = 160 \Omega \text{to GND} \end{aligned} $
Maximum Output	F _{OUT} -	750	1000		MHz	$ \begin{aligned} & \text{Full V}_{\text{OD}} \text{ Swing , V}_{\text{OD}} \geqslant \\ & 600\text{mV, R}_{L} = 100\Omega \\ & \text{differential, V}_{\text{DDOX}} = 2.5\text{V,} \\ & R_{T} = 91\Omega \text{ to GND} \end{aligned} $
Frequency	MAX	1500	2200		MHz	$\label{eq:Reduced Vod Swing} \begin{array}{l} Reduced\ V_{OD}\ Swing\ ,\ V_{OD} \\ \geqslant 400mV,\ R_L = 100\Omega \\ differential,\ V_{DDOX} \!\!=\!\! 3.3V, \\ R_T \!\!=\! 160\Omega\ to\ GND \end{array}$
		1500	2200		MHz	$\label{eq:Reduced Vod Swing} \begin{split} & Reduced \ V_{OD} \ Swing \ , \ V_{OD} \\ & \geqslant 400 mV, \ R_L = 100 \Omega \\ & differential, \ V_{DDOX} = 2.5V, \\ & R_T = 91 \Omega \ to \ GND \end{split}$
Output Voltage Swing	V_{OD}	600	830	1000	mV	T area pa
Output High Voltage	V_{OH}	V _{DDOX} - 1.2	V _{DDOX} - 0.9	$V_{\rm DDOX}$ - 0.7	V	$T_A = 25^{\circ}\text{C}$, DC Measurement, $R_T = 50\Omega$ to V_{DDO} - 2V
Output Low Voltage	V_{OL}	$V_{\rm DDOX}$ - 2.0	V _{DDOX} - 1.75	$V_{\rm DDOX}$ - 1.5	V	V DDO - 2 V
Output Duty Cycle	Duty Cycle	45	50	55	%	
Output Rise Time, 20% to 80%	$t_{ m Rise}$		250	350	ps	$R_T = 160\Omega$ to GND, uniform transmission line up to 10
Output Fall Time, 80% to 20%	t _{Fall}		180	300	ps	inches with 50Ω characteristic impedance, R_L = 100Ω differential, $C_L \le 5pF$
Propagation Delay	t_{Delay}	180	360	540	ps	$R_T = 160 \Omega$ to GND, $R_L = 50\Omega$ differential, $C_L \le 5pF$
Output Skew	$t_{ m Skew}$		30	50	ps	Skew specified between any two CLKouts with the same buffer type. Load conditions
Part-to-part Output Skew	t_{PDP}		80	120	ps	per output type are the same as propagation delay specifications.
			55		fs	F _{IN} =100MHz Slew Rate≥3V/ns 1MHz to 20MHz
			35		fs	F _{IN} =156.25MHz Slew Rate≥3V/ns 1MHz to 20MHz
Additive RMS Jitter	t _J		25		fs	F _{IN} =625MHz Slew Rate≥3V/ns 1MHz to 20MHz
			60	98	fs	F _{IN} =100MHz Slew Rate≥3V/ns 10kHHz to 20MHz
			30	78	fs	F _{IN} =156.25MHz Slew Rate≥3V/ns 10kHHz to

TEL:0086-0769-88010888

https://www.dptel.com/

Songshan Lake, Dongguan, Guangdong

Version: 1.2 DAPU Confidential Page: 11/21

Parameters	Symbol	Value	Unit	Notes
				20MHz
		-161	dBc/	F _{IN} =100MHz
Noise Floor f _{OFFSET} ≥10MHz	NF	-101	Hz	Slew Rate≥3V/ns
		-159	dBc/	$F_{IN}=156.25MHz$
			Hz	Slew Rate≥3V/ns
		154	dBc/	F _{IN} =625MHz
		-154	Hz	Slew Rate≥3V/ns

Table 9. HCSL Outputs Characteristics

Test Condition: $-40^{\circ}\text{C} \le T_A \le 85^{\circ}\text{C}$, $3.15\text{V} \le V_{DD} \le 3.45\text{V}$, $2.375\text{V} \le V_{DDOX} \le 2.625$ or $3.135\text{V} \le V_{DDOX} \le 3.45$, CLK driven differentially, input slew rate $\ge 3\text{V/ns}$.

_	a	Value		T T 4::		
Parameters	Symbol	Min.	Тур.	Max.	Unit	Notes
QAn/nQAn,QBn/nQI	3n		•	•	•	
Output Frequency Range	F _{OUT}	0		400	MHz	
Absolute Crossing Voltage	V _{CROSS}	160	350	460	mV	$R_L = 50\Omega$ to GND, $C_L \le 5pF$
Total Variation of V_{CROSS}	ΔV_{CROSS}			140	mV	Y
Output High Voltage	V_{OH}	520	750	920	mV	$T_A = 25$ °C, DC Measurement, R_T
Output Low Voltage	V_{OL}	-150	0.5	150	mV	$=50\Omega$ to GND
Output Duty Cycle	Duty Cycle	45	50	55	%	
Output Rise/Fall Time, 20% to 80%	$t_{ m Rise} / t_{ m Fall}$		300	500	ps	3/2
Propagation Delay	$t_{ m Delay}$	295	590	885	ps	$R_T = 50\Omega$ to GND, $C_L \le 5pF$
Output Skew	$t_{ m Skew}$		30	50	ps	Skew specified between any two CLKouts with the same buffer
Part-to-part Output Skew	t _{PDP}		80	120	ps	type. Load conditions per output type are the same as propagation delay specifications.
	t		0.03	0.15	ps	PCIe Gen 3, PLL BW = 2-5MHz, CDR = 10MHz, F_{IN} =100MHz Slew Rate \geq 0.6V/ns
	tj_PCIe		0.03	0.05	ps	PCIe Gen 4, PLL BW = 2-5MHz, CDR = 10MHz, F_{IN} =100MHz Slew Rate \geq 1.8V/ns
Additive RMS Jitter	f-		77		fs	$V_{DDO}=3.3V,R_T=50\Omega$ to GND $F_{IN}=100MHz$ Slew Rate $\geqslant 3V/ns$ 1MHz to $20MHz$
	t _J		86		fs	$V_{DDO} = 3.3V, R_T = 50\Omega$ to GND $F_{IN}=156.25Hz$ Slew Rate \geq 3V/ns 1MHz to 20MHz
Noise Floor f _{OFFSET} ≥10MHz	NF		-161		dBc/ Hz	$V_{DDO} = 3.3V$, $R_T = 50\Omega$ to GND $F_{IN}=100MHz$

TEL:0086-0769-88010888

https://www.dptel.com/

Songshan Lake, Dongguan, Guangdong

Version: 1.2 DAPU Confidential Page: 12/21

Parameters	Symbol	Value		Unit	Notes
					Slew Rate ≥ 3V/ns
		-156		dBc/ Hz	$V_{DDO} = 3.3V, R_T = 50\Omega$ to GND $F_{IN} = 156.25 Hz$ $Slew Rate \ge 3V/ns$

Table 10. LVCMOS Outputs Characteristics

 $Test \ Condition: \ -40^{\circ}C \le T_{A} \le 85^{\circ}C, 3.15V \le V_{DD} \le 3.45V, \ 2.375V \le V_{DDOX} \le 2.625 \ or \ 3.135V \le V_{DDOX} \le 3.45,$ CLK driven differentially, input slew rate $\geq 3V/ns$.

Parameters	Cumbal		Value		Unit	Notes	
Parameters	Symbol	Min.	Тур.	Max.	Omt	Notes	
Output High Voltage	V_{OH}	V _{DDOX} - 0.1			V	1mA Load	
Output Low Voltage	V_{OL}			0.1	V		
Ontrot III of Comment	T		28		mA	$V_{DDOX}=3.3V$	
Output High Current	I_{OH}		20		mA	V _{DDOX} =2.5V	
Output I ou Cumont	т		28		mA	V _{DDOX} =3.3V	
Output Low Current	I_{OL}		20		mA	V _{DDOX} =2.5V	
Output Frequency Range(F _{OUT}	0		300	MHz	CL ≤ 5pF	
Output Duty Cycle	Duty Cycle	45	50	55	%	50% input clock duty cycle	
Output Rise Time, 20% to 80%	$t_{ m Rise}$		225	500	ps	250MHz, uniform transmission line up to 10 inches with 50Ω characteristic impedance,	
Output Fall Time, 20% to 80%	t _{Fall}		225	400	ps	$R_L = 50\Omega$ to GND, $C_L \le 5pF$	
Propagation Dalay		900	1475	2300	ps	$V_{DDOX}=3.3V, CL \leq 5pF$	
Propagation Delay	t _{Delay}	1000	1550	2700	ps	V_{DDOX} =2.5V, CL \leq 5pF	
Additive RMS Jitter, BW = 1MHz to 20MHz	t_J		132		fs	$V_{DDO} = 3.3V$ $C_L \le 5pF F_{IN}=100MHz$	
Noise Floor, $f_{OFFSET} \ge 10MHz$			-158		dBc/ Hz	Slew Rate ≥ 3V/ns	
Output Enable/Disable Time	$t_{\rm EN}/t_{ m DIS}$			3	Cycle	$C_L \leqslant 5pF$	

TEL:0086-0769-88010888

Songshan Lake, Dongguan, Guangdong

5 FUNCTION DESCRIPTION

5.1 Control Signals

INS6310A has three groups of control signals:

- ➤ Input Selection
- Output Type Selection
- ➤ Reference Output Enable

Clock input selection is controlled using the SEL0 and SEL1 pins as shown in Table 11. Refer to Driving the Clock Inputs for clock input requirements. When CLK0 or CLK1 is selected, the crystal circuit is powered down. When Xin is selected, the crystal oscillator will start-up and its clock will be distributed to all outputs. Refer to Crystal Interface for more information. Alternatively, Xin may be driven by a single-ended clock, up to 250MHz, instead of a crystal.

Table 11. Input Selection

SEL[1]	SEL[0]	Selected Input
0	0	CLK0/nCLK0
0	1	CLK1/nCLK1
1	X	X_{IN}/X_{OUT}

The differential output buffer type for Bank A and Bank B outputs can be separately configured using the OTYPEA[1:0] and OTYPEB[1:0] inputs, respectively, as shown in table 12. For applications where all differential outputs are not needed, any unused output pin should be left floating with a minimum copper length to minimize capacitance and potential coupling and reduce power consumption. If an entire output bank will not be used, it is recommended to disable (Hi-Z) the bank to reduce power. Refer to Termination and Use of Clock Drivers for more information on output interface and termination techniques.

Table 12. Output Type Selection

OTYPEx[1]	OTYPEx[0]	Output Type (BankA or B)
0	0	LVPECL
0	1	LVDS
1	0	HCSL
1	1	Hi-Z

Notes: OTYPEx represent OTYPEA and OTYPEB

The reference output (REFOUT) provides a LVCMOS copy of the selected input clock. The LVCMOS output high level is referenced to the V_{DDO} voltage. REFOUT can be enabled or disabled using the enable input pin, REFOUT_OE, as shown in Table 13.

Table 13. Reference Output Enable

	•
REFOUT_OE	Reference Output State
0	Hi-Z
1	Enabled

TEL:0086-0769-88010888

https://www.dptel.com/

Songshan Lake, Dongguan, Guangdong

Version: 1.2 DAPU Confidential Page: 14/21

5.2 Input Clocks

CLK/nCLK differential inputs: The INS6310A has two differential inputs (CLK0/nCLK0 and CLK1/nCLK1) that can accept AC or DC coupled 3.3V/2.5V LVPECL, LVDS, CML, SSTL and other differential and single-ended signals that meet the input requirements specified in ELECTRICAL CHARACTERISTICS. The device can accept a wide range of signals due to its wide input common mode voltage range (V_{CM}) and input voltage swing (V_{ID}). It is recommended that the inputs have a high slew rate of 3 V/ns (differential) or higher in case to degrade the noise floor and jitter. For this reason, a differential input signal is recommended over single-ended because it typically provides higher slew rate and common-mode noise rejection.

CLK/nCLK single-ended inputs: It is possible to drive it with a single-ended clock. For large single-ended input signals, such as 3.3V or 2.5V LVCMOS, a 50Ω load resistor should be placed near the input for signal attenuation to prevent input overdrive as well as for line termination to minimize reflections. The CLK input has an internal bias voltage of about 1.4V, so the input can be AC coupled as shown in Figure3. The output impedance of the LVCMOS driver plus R1 should be close to $50~\Omega$ to match the characteristic impedance of the transmission line and load termination.

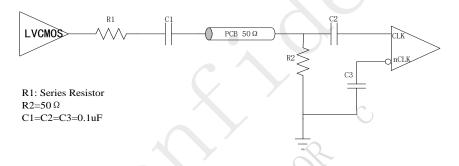


Figure 3. Single-Ended LVCMOS input, AC Coupling

A single-ended clock may also be DC coupled to CLKx as shown in Figure 4. A 50Ω load resistor should be placed near the CLKx input for signal attenuation and line termination. Because half of the single-ended swing of the driver $(V_{O,PP}/2)$ drives CLKx, nCLKx should be externally biased to the midpoint voltage of the attenuated input swing $((V_{O,PP}/2)\times0.5)$. The external bias voltage should be within the specified input common voltage (V_{CM}) range. This can be achieved using external biasing resistors in the $k\Omega$ range (R3 and R4) or another low-noise voltage reference. This will ensure the input swing crosses the threshold voltage at a point where the input slew rate is the highest.

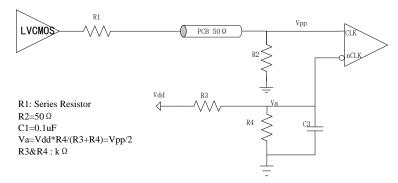


Figure 4. Single-Ended LVCMOS input, DC Coupling

TEL:0086-0769-88010888 https://www.dptel.com/

Songshan Lake, Dongguan, Guangdong

Version: 1.2 DAPU Confidential Page: 15/21

X_{IN}/X_{OUT}: If the crystal oscillator circuit is not used, it is possible to drive the Xin input with a single-ended external clock as shown in Figure 5. The input clock should be AC coupled to the Xin pin, which has an internally generated input bias voltage, and the Xout pin should be left floating. While Xin provides an alternative input to multiplex an external clock, it is recommended to use either differential input (CLKx) since it offers higher operating frequency, better common mode, improved power supply noise rejection and greater performance over supply voltage and temperature variations.

Figure 5. X_{IN} Single-Ended LVCMOS Clock

The INS6310A has an integrated crystal oscillator circuit that supports a fundamental mode, AT-cut crystal. The crystal interface is shown in Figure 6, while CL is specified for the crystal and C_{Shunt} is the sum of C_{IN} and PCB C_{STRAY} .

As shown in Figure 6, an external resistor, R_{LIMIT} , can be used to limit the crystal drive level if necessary. If the power dissipated in the selected crystal is higher than the drive level specified for the crystal with R_{LIMIT} shorted, then a larger resistor value is mandatory to avoid overdriving the crystal. However, if the power dissipated in the crystal is less than the drive level with R_{LIMIT} shorted, then a zero value for R_{LIMIT} can be used. As a starting point, a suggested value for RLIM is $1.5k\Omega$.

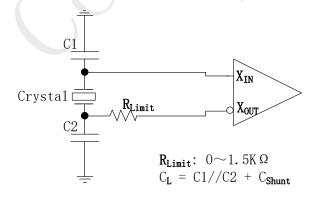


Figure 6. X_{IN}/X_{OUT} Crystal Interface

5.3 CLOCK OUTPUTS

INS6310A has two banks of 5 differential outputs and one LVCMOS output which can be independently supplied with 3.3V or 2.5V.

TEL:0086-0769-88010888 https://www.dptel.com/ Songshan Lake, Dongguan, Guangdong

Version: 1.2 DAPU Confidential Page: 16 / 21

Table 14. Clock Outputs

Bank	Outputs
Bank A	QA0, QA1, QA2, QA3, QA4
Bank B	QB0, QB1, QB2, QB3, QB4
REFOUT	REFOUT

Table 2 following will be the state of the outputs.

Table 15. Input Vs. Output States

SEL[1]	Input Clock	Output State	
Logic Low	CLKx=Open nCLKx=Open	Logic Low	
	CLK= Logic High nCLK= Logic Low	Logic High	
	CLK= Logic Low nCLK= Logic High	Logic Low	
	CLK and nCLK short	Logic Low	
Logic High	X _{IN} = Logic High	Logic Low	
	X _{IN} = Logic Low	Logic High	

Notes

 Unused outputs should be left floating with a minimum copper length to minimize capacitance. In this way, this output will consume minimal output current because it has no load.

5. 3. 1 Termination and Use of Clock Drivers

When terminating clock drivers keep in mind these guidelines for optimum phase noise and jitter performance:

- Transmission line theory should be followed for good impedance matching to prevent reflections.
- Clock drivers should be presented with the proper loads.
 - > LVDS outputs are current drivers and require a closed current loop.
 - ightharpoonup HCSL drivers are switched current outputs and require a DC path to ground via 50Ω termination.
 - LVPECL outputs are open emitter and require a DC path to ground.
- Receivers should be presented with a signal biased to their specified DC bias level (common
 mode voltage) for proper operation. Some receivers have self-biasing inputs that automatically
 bias to the proper voltage level; in this case, the signal should normally be AC coupled.

It is possible to drive a non-LVPECL or non-LVDS receiver with a LVDS or LVPECL driver as long as the above guidelines are followed. Check the datasheet of the receiver or input being driven to determine the best termination and coupling method to be sure the receiver is biased at the optimum DC voltage (common mode voltage)

Termination for LVDS Driver

For DC coupled operation, terminate with 100Ω as close as possible to the LVDS receiver. For AC coupled operation by adding DC blocking capacitors, the load termination resistor and AC coupling capacitors should be placed as close as possible to the receiver inputs to minimize stub length, as shown in Figure 7

TEL:0086-0769-88010888

https://www.dptel.com/

Songshan Lake, Dongguan, Guangdong

Version: 1.2 DAPU Confidential Page: 17/21

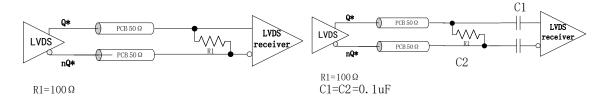


Figure 7. LVDS DC&AC Coupling

Termination for LVPECL Driver

For DC coupled operation of an LVPECL driver, terminate with 50 Ω to V_{DDO} - 2V. Alternatively terminate with a Thevenin equivalent circuit for V_{DDO} (output driver supply voltage) = 3.3V and 2.5V. In the Thevenin equivalent circuit, the resistor dividers set the output termination voltage (V_{TT}) to V_{DDO} - 2V. as shown in Figure 8

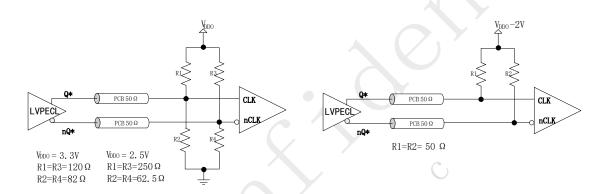


Figure 8. LVPECL DC Coupling

When AC coupling an LVPECL signal use 160Ω emitter resistors (or 91Ω for $V_{DDO}=2.5V$) close to the LVPECL driver to provide a DC path to ground as shown in Figure 9. For proper receiver operation, the signal should be biased to the DC bias level (common mode voltage) specified by the receiver. The typical DC bias voltage (common mode voltage) for LVPECL receivers is 2.0V. Alternatively, a Thevenin equivalent circuit forms a valid termination as shown in Figure 9 for $V_{DDO}=3.3V$ and 2.5V. This Thevenin circuit is different from the DC coupled example in Figure 8, since the voltage divider is setting the receiver input common mode voltage.

Version: <u>1.2</u>

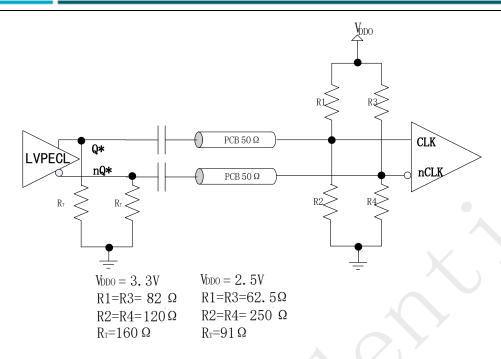


Figure 9. LVPECL AC coupling, Thevenin equivalent

Termination for HSCL Driver

For DC coupled operation of an HCSL driver, terminate with 50Ω to ground near the driver output as shown in Figure 10. Series resistors, R_S , may be used to limit overshoot due to the fast transient current. Because HCSL drivers require a DC path to ground, AC coupling is not allowed between the output drivers and the 50Ω termination resistors.

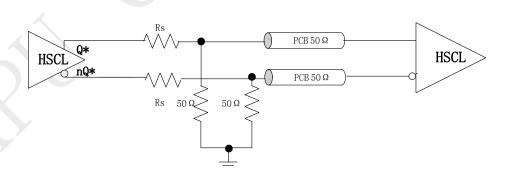


Figure 10. HCSL Operation, DC Coupling

TEL:0086-0769-88010888 https://www.dptel.com/ Songshan Lake, Dongguan, Guangdong

Version: 1.2 DAPU Confidential Page: 19 / 21

5.4 Power Supply

The INS6310A operates from a 3.3V core supply and 3 independent 3.3V/2.5V output supplies.

VDD is INS6310A core supply voltage support 3.3V.

VDDOA, VDDOB and VDDOC are power supply for Bank A, B, C output buffers respectively. They can operate from 3.3V or 2.5V.

Notes

- V_{DDO} should be less than or equal to V_{DD} ($V_{DDO} \leq V_{DD}$)
- .1uF or 0.01uF bypass capacitors should be placed very close to each supply pin
- 1uF to 10uF Decoupling capacitors should be placed nearby

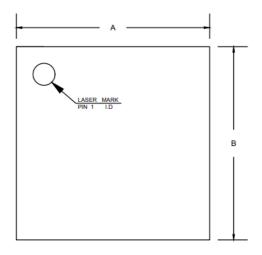
Version: 1.2 DAPU Confidential Page: 20/21

https://www.dptel.com/

TEL:0086-0769-88010888

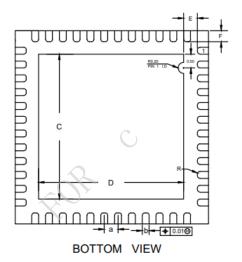
Songshan Lake, Dongguan, Guangdong

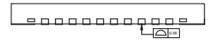
6 ENVIRONMENT


Table 16. ENVIRONMENT CONDITIONS

Parameters	Value	Unit	Notes	
ESD Level	±2000V	V	HBM, Refer to ANSI/ESDA/JEDEC JS-001-2010	A
	±800V	V	CDM, Refer to JEDEC specification JESD22-C101	

* HBM: Human body model


CDM: Charged-device model


7 PACKAGE OUTLINE

TOP VIEW

COMMON DIMENSIONS								
(UNITS OF MEASURE=MILLIMETER)								
SYMBOL	MIN	NOM	MAX					
Α	6.90	7.00	7.10					
В	6.90	7.00	7.10					
D	5.20	5.30	5.40					
С	5.20	5.30	5.40					
E	0.35	0.45	0.55					
F	0.30	0.40	0.50					
R	0.09	_	_					
а	0.40	0.50	0.60					
b	0.20	0.25	0.30					
a1	0.70	0.75	0.80					
a2	0.20REF							
a3	0.00	0.02	0.05					

SIDE VIEW A1

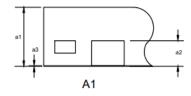


Figure 11. Package Outline Diagram

TEL:0086-0769-88010888

https://www.dptel.com/

Songshan Lake, Dongguan, Guangdong

Version: 1.2 DAPU Confidential Page: 21/21